Contact information Jörn M. Schattenberg (Joern.Schattenberg@uks.eu) Dean Tai (Dean.Tai@histoindex.com)

Introduction

Efruxifermin (EFX) has been observed to improve fibrosis without worsening MASH, by conventional histopathology, with a doubling of response rates between week 24 and week 96 for the 50mg EFX group, with a slight increase observed for the 28mg EFX group in the Liver Biopsy Analysis Set (LBAS). The placeboadjusted effect sizes for fibrosis improvement without worsening of MASH grew from 21% to 52% between week 24 and week 96 for the 50mg group and from 20% to 22% for the 28mg group.

Aim

This post-hoc analysis investigates changes in fibrosis using AI-based qFibrosis® that can detect subtle intrastage changes by using collagen morphometry for precise quantification on a continuous scale.

Method

Subjects with unstained biopsies at baseline (BL), week 24 (W24), and week 96 (W96) (n=82) were available for qFibrosis® analysis using Second Harmonic Generation/Two-Photon Excitation Fluorescence (SHG/TPEF) imaging. The qFibrosis® score incorporated a correction to account for a significant reduction in hepatic fat observed with EFX treatment, as well as offering a detailed assessment of fibrosis dynamics across the following defined hepatic zones: portal, peri-portal (zone 1), peri-sinusoidal (zone 2), central, and peri-central (zone 3).

Results

In this analysis, for the 28mg EFX group, conventional histopathology identified most responders at W24 (n=9), with 2 new responders identified at W96. In contrast, qFibrosis® captures more responders at W24, with 70-75% of subjects showing a statistically significant improvement of ≥ 1 fibrosis stage. qFibrosis® also captures most responders at W24 (n=18) for the 50mg group, a response rate which ultimately converges with that for ≥1-stage fibrosis improvement by conventional histopathology at W96 (70-80%) (Figure 1). These analyses demonstrate the capability of qFibrosis® to capture the W24 regression of fibrosis associated with EFX treatment earlier than conventional histopathology.

Figure 1: Proportion of subjects with EITHER ≥1 stage fibrosis improvement from baseline to W24 with *sustained* fibrosis response at W96, OR with ≥ 1 stage fibrosis improvement from baseline to W96 who had not improved by W24 (**new** fibrosis responders), based on (A) conventional histopathology and (B) qFibrosis® staging.

Jörn M. Schattenberg¹, Dean Tai², Elaine Chng², Yukti Choudhury², Galvin Gan², Cynthia Behling³, Pierre Bedossa⁴, Doreen Chan⁵, Jimmie Zhang⁵, Erica Fong⁵, Brittany de Temple⁵, Matthew Minerva⁵, Mark Burch⁵, Kimberly Barrett⁵, Reshma Shringarpure⁵, Erik Tillman⁵, Tim Rolph⁵, Andrew Cheng⁵, Kitty Yale⁵, Mazen Noureddin⁶ ¹Department of Internal Medicine II, Saarland University Medical Center, Homburg, Germany, ²HistoIndex Pte Ltd, Singapore, ³University of California, San Diego, United States, ⁴Liverpat, Paris, France, ⁵Akero Therapeutics, South SF, United States, ⁶Houston Research Institute; Houston Methodist Hospital, Houston, United States

QFibrosis enables earlier detection of fibrosis response in Efruxifermin-treated patients with F2-F3 MASH in 96-week HARMONY study

The earlier capture of W24 responders by qFibrosis® is evident in the statistically significant regression of fibrosis in Zones 1 and 2 in EFX arms compared to placebo, which was sustained in EFX arms at W96 (Figure 2). The quantitative regression in Zones 1 and 2 was observed in subjects whether or not improvements in fibrosis had been seen by conventional histopathology staging, highlighting the consistency and sensitivity of qFibrosis® in capturing subtle but significant fibrosis reductions for EFX-treated subjects.

At BL, both conventional histopathology and qFibrosis® demonstrated bridging fibrosis (NASH CRN stage F3; qFibrosis® stage qF3). At W24, qFibrosis® demonstrates a decrease in the total amount of collagen in Zones 1 and 2 (qFibrosis® stage qF3 to qFibrosis® stage qF2), unlike conventional histopathology which demonstrated no change from BL. At W96, both conventional histopathology and qFibrosis® indicate a response. (NASH CRN stage F3 to NASH CRN stage F1, and qFibrosis® stage qF3 to qFibrosis® stage qF1) (Figure 3).

Analysis by qFibrosis® of W24 biopsies from subjects treated with 50mg EFX captures a higher proportion of responders than identified by conventional histopathology. These early responders became fibrosis responders at W96 by conventional histopathology.

This finding supports the potential utility of qFibrosis® zonal analysis based on digital pathology, to enable drug development by identifying improvements in patterns of zonal fibrosis earlier during interventional trials in subjects with F2 and F3 MASH.

Figure 2: Analysis across 5 pre-defined hepatic zones: portal tract (PT), peri-PT, perisinusoidal (PS), peri-central, and central vein (CV). Arrows with asterisk denotes a significant decrease (relative change) of collagen area in these zones at W24 or W96 from baseline. Paired t-test is used to determine significance between the Week 24 or Week 96 versus baseline.

Figure 3: Case example of a subject (50mg EFX) demonstrates the increased sensitivity of SHG/TPEF combined with AI digital pathology to detect changes in fibrosis and to quantify changes in fibrosis based on a continuous scale spanning NASH CRN incremental staging.

Conclusions

Acknowledgements

The authors thank the patients who participated in this study and their families, as well as the investigators and the study coordinators.

