AASLD The Liver Meeting

INTRODUCTION

- Cardinal histological features reflecting activity are central to the diagnosis of metabolic dysfunction-associated steatotic liver disease (MASLD) and fibrosis stage is associated with increased mortality and liver-related events.
- Recent data indicates significant correlation between ballooning and inflammation with long-term clinical outcomes, though this correlation is less significant when combined with steatosis.¹
- Liver biopsies of the SteatoSITE cohort² allowed stain-free quantification of histological features that are predictive of clinical outcomes but unapparent to human observers.

AIM

- Previous research has demonstrated that the linkage between fibrosis morphological features quantified by qFibrosis is more robust than conventional ordinal fibrosis staging systems.³
- Building on this approach, we aim to evaluate whether a combined analysis of fibrosis and ballooning/steatosis features can more effectively predict long-term clinical outcomes.

METHOD

- Sections from n=452 biopsies were randomized into training (300) or test (152) sets and imaged for fibrosis, steatosis, and ballooning parameters using second harmonic generation/twophoton excitation fluorescence (SHG/TPE) microscopy.
- 5 of 184 fibrosis parameters have previously been used to derive separate fibrosis-based **Clinical Outcome Mortality** Index (COMI-F) and Clinical Outcome Decompensation Index (CODI-F).
- By feature traversing, the effect of adding 65 steatosis and 21 ballooning parameters to COMI and CODI was tested, and **improved composite outcome indices (-FS and -FB)** generated.
- In the testing set, the predictive power of the new composite indices was compared with assigned NASH-CRN fibrosis stage (F0/1/2 v F3/4), stain-free imaging derived qFibrosis stage (qF0/1/2 v qF3/4), and previously derived fibrosis-only indices using Kaplan–Meier analysis and Cox proportional hazards modelling.

Figure 2: Kaplan–Meier time-to-event analysis in n = 152 validation cohort with log-rank test p-value for <u>hepatic</u> decompensation (with death as a competing risk) with high/low risk dichotomisation based on (Top row, L to R): (A) NASH-CRN Fibrosis, (B) NAS Steatosis and (C) NAS Ballooning; (Bottom row, L to R): (D) CODI-F, (E) CODI-S and (F) CODI-B

STAIN-FREE DIGITAL PATHOLOGY IMAGING PROVIDES MICROARCHITECTURALLY-RESOLVED INSIGHTS INTO SCAR EVOLUTION AND HISTOLOGICAL INJURY ALLOWING DIRECT **CLINICAL OUTCOME PREDICTION IN METABOLIC DYSFUNCTION-ASSOCIATED STEATOTIC** LIVER DISEASE

Timothy J. Kendall¹, Dean Tai², Elaine Chng², Yayun Ren², Jonathan A. Fallowfield¹ ¹Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom; ²HistoIndex Pte Ltd, Singapore

Figure 1: Kaplan–Meier time-to-event analysis in n = 152 validation cohort with log-rank test p-value for all-cause mortality with high/low risk dichotomisation based on (Top row, L to R): (A) NASH-CRN Fibrosis, (B) NAS Steatosis and (C) NAS Ballooning; (Bottom row, L to R): (D) COMI-F, (E) COMI-S and (F) COMI-B

Table 1: Hazard ratios and p-values for prediction of all-cause mortality and hepatic compensation using composite stain-free fibrosis, ballooning and steatosis parameter-derived indices compared with NASH-CRN fibrosis scores, qFibrosis scores, and stain-free fibrosis parameter-only indices.

	All-cause mortality (COMI)			Hepatic decompens
	Hazard ratio (HR)	<i>p</i> -value	95% HR confidence intervals	Hazard ra
NASH-CRN fibrosis (F0/1/2 v F3/4)	3.41	0.003	1.428-8.15	3.65
qFibrosis (qF0/1/2 v qF3/4)	3.07	0.007	1.295-7.257	3.59
Fibrosis parameter-only indices COMI-F & CODI-F (low v high risk)	4.49	0.003	1.5-13.38	5.96
Composite ballooning and fibrosis parameter indices COMI- FB & CODI-FB (low v high risk)	7.84	<0.001	1.824-33.72	5.98
Composite steatosis and fibrosis parameter indices COMI-FS & CODI-FS (low v high risk)	5.00	<0.001	1.681-14.88	5.87

Figure 3: Kaplan–Meier time-toevent analysis in n = 152 validation cohort with log-rank test p-value for for (A) all-cause mortality (COMI-FB) and (B) hepatic decompensation (CODI-FB) with high/low risk dichotomisation based on composite indices generated by including *fibrosis and ballooning* parameters

Figure 4: Kaplan–Meier time-toevent analysis in n = 152 validation cohort with log-rank test p-value for for (A) all-cause mortality (COMI-FS) and (B) hepatic decompensation (CODI-*FS*) with high/low risk dichotomisation based on composite indices generated by including *fibrosis and steatosis* parameters

2000 4000 6000

Time davs

- The composite indices for all-cause mortality (COMI-FB) and hepatic decompensation (CODI-FB) generated by including ballooning parameters had greater predictive power than the COMI-F and CODI-F, respectively, as well as qFibrosis-derived stage and NASH-CRN fibrosis score
- The composite indices for all-cause mortality (COMI-FS) and hepatic decompensation (CODI-FS) generated by including steatosis parameters also had greater predictive power than the COMI-F, as well as qFibrosis-derived stage and NASH-CRN fibrosis score.

sation	(CODI)

B) Fibrosis and ballooning-based hepatic decompensation index (CODI-FB)

	CODI-FB
	+ Index<=0.29
8000	

CONCLUSIONS

- Advances in AI based imaging analysis have introduced quantitative measures for fibrosis, steatosis, and ballooning, using methodologies now widely validated in MASH clinical trials.
- We show that microarchitectural features of injury and fibrosis quantified by stain-free SHG/TPE imaging can generate indices with greater predictive value for all-cause mortality and liver-related events than indices leveraging fibrosis parameters alone or ordinal fibrosis scores.
- Combining fibrosis and ballooning parameters enhances the hazard ratio, underscoring the critical role of ballooning in developing predictive models for MASH clinical outcomes.
- Additional validation of these findings is required through prospective studies to confirm their applicability and reliability.

REFERENCES

- Harrison, et. al., NASH-TAG 2024
- . Kendall TJ, Jimenez-Ramos M, Turner F et al. Nat Med 2023;29:2939-2953
- Kendall TJ, et. al., Liver Int. 2024 Oct;44(10):2511-2516

ACKNOWLEDGEMENTS

This work was funded by Innovate UK Eureka (Ref: 105976)

We are grateful to Lynn McMahon and Marian McNeil (Precision Medicine Scotland-Innovation Centre) for project management, data compliance and security, and trusted research environment provision. We also thank Dr Amy Tayler for her help in the acquisition of funding.

CONTACT INFORMATION

Jonathan A. Fallowfield (Jonathan.Fallowfield@ed.ac.uk) Dean Tai (<u>Dean.Tai@histoindex.com</u>)